Connect with us

Techniques

Tools to Stabilize the Rescue Scene

Situations like extricating victims from a motor vehicle crash or removing them from a trench present many unique challenges to the emergency responder — not the least of which is stabilizing the situation.

Published

on

Situations like extricating victims from a motor vehicle crash or removing them from a trench present many unique challenges to the emergency responder — not the least of which is stabilizing the situation.

The first tactical objective in such situations is very much akin to the mantra of any good physician: Do no further harm to the patient. For a technical rescuer that means that our initial actions must be to protect ourselves and our patients.

And whom do we most often need to protect the patient from? Us, the rescuers.

I say that because in our zeal to “get to work” at the job of getting to and successfully removing the patient, rescuers don’t take the necessary steps to stabilize the vehicle or the trench. Inexperienced rescuers don’t understand and experienced ones get tunnel vision.

Have you ever seen or been a part of an operation where the vehicle was rocking and moving while rescuers cut and pried to gain access to the patient? In such a scenario, the rescuers were not giving the situation the stabilization required to protect both the patient and the rescuers.

The MVC

Considering the number and types of injuries that a patient can sustain in an MVC, this unstable vehicle can only exacerbate whatever injuries the patient has suffered. Often, such inadequately stabilized cars shift or fall, resulting in the rescuers becoming victims.

Today’s vehicles — with their thin springy sheet metal or plastic panels spot welded or glued to lightweight metal cages — present an entirely different stabilization challenge than did their predecessors. Newer vehicles are designed to absorb the crash energy and not pass it on to the occupants. When they roll they tend to bounce around like a beach ball because of the resilient, dent resistant panels and lightweight construction.

Rescuers often encounter vehicles that have bounced into trees, landed on top of other vehicles, or crashed into buildings. They often find a crunched up ball of plastic and metal with a viable patient as its core.

It is extremely difficult to stabilize these vehicles because it requires the capability to support loads that are above ground level. Start pounding wedges or cribbing between the ground and vehicle and what do you get? Not much positive stabilization because the dent-resistant panels flex and absorb the wedges.

The bottom-line is that we have lost the ability to stabilize most of these vehicles effectively using wood or plastic cribbing alone.

Rescue Struts

Rescue equipment designers understand how new vehicle technology has evolved, and have responded with equipment to solve these issues. The technical term for these tools is tensioned buttress systems. The simple term is “struts.”

Struts have been around for thousands of years, but two developments have increased their popularity in the rescue field. The first is the evolution of motor vehicle technology, which has eliminated much of the effectiveness of traditional cribbing.

The second is the development of advanced materials used in the construction of struts such as high-strength aluminum and advanced composite materials structural composites, like Kevlar.

Equipment designers have taken these new materials and designed struts that are extremely strong, lightweight, and compact. The manufacturers are now able to produce Struts that both stabilize loads and lift/support loads.

JunkYard Dog Industries teamed with the folks a ZipNut Technologies and created the first pin-less rescue strut. They placed the double collar where the adjustment pin would normally be, and replaced the inner tube with a threaded stainless steel solid bar.

To extend the strut, the rescuer pulls up on the collar’s head and the threaded rod “zips” out of the square tube; to stop and lock the tubing in place the rescuer stops pulling.

For incremental adjustments in height or tension, rotate the collar and the threaded rod moves accordingly. When ready to retract the extension, just pull-up on the collar, the threaded rod is released and can be dropped back into the outer tube.

Categories of Struts

When looking for the struts that best suit your tactical needs and cost constraints, there are four categories of struts — good, better, best, and ‘if you have to ask … ‘ — with price and load capacities increasing as you advance.

Wood shoring is easy to make shorter and hard to make longer. This shoring is inexpensive, but bulky to store, not versatile and cumbersome to use. Systems are available for capping ends, combining shorter pieces to make longer sections, and attaching ratchet straps. Some brand names include ResQTec Criblocks, Z-Mag Rescue and Capabear Claw.

Props, which are small-diameter steel telescoping tubing, are good starter tools with a limited load capacity — typically 2,000 to 5,000 pounds. These are good for preventing a light vehicle from tipping over, but not capable of supporting advanced rescue loads.

The small size makes them easy to store. The brands include ParaTech, Res-Q-Jack and Junkyard Dog.

Stabilizing and lifting struts are composed of steel signpost material or advanced composite materials and have a load capacity range of 4,000 to 18,000 pounds. These Struts also have jacks, which can be used to aid in lifting loads or cribbing behind airbags.

These struts are designed for vehicle, machinery, aircraft and light structural rescue, but small enough to store easily. The brand names include Rescue 42 TeleCribs, Res-Q-Jack and ParaTech Highway VSK.

Heavy Rescue struts are designed for loads in excess of 40,000 pounds and are primarily designed for building collapse and trench rescue. These big-boy struts are easily strong enough for common vehicle rescue, and are best for heavy vehicle rescue.

Their large size requires significant storage space. The brand names include Paratech Interstate VSK, Hurst Airshore, Holmatro Powershore, and Prospan.

FireRescue1.com
This content provided in partnership with FireRescue1.com

Battalion Chief (Ret.) Robert Avsec served with the men and women of the Chesterfield County (VA) Fire and EMS Department for 26 years. He’s now using his acquired knowledge, skills, and experiences as a freelance writer for FireRescue1.com and as the “blogger in chief” for this blog. Chief Avsec and his wife of 30+ years now make their home in Cross Lanes, WV. Contact him via e-mail.

Techniques

Blue Collar Training Network

Great content and cutting edge training scenarios!

Published

on

Blue Collar Training Network

If you are not following the Blue Collar Training Network on Facebook you are missing out on great content and cutting edge training scenarios.   Take a look at the post below and other pictures that one of their instructors, Andrew Hale, posted on Facebook.  Here’s another method to capture the suspension of a vehicle involved in an under-ride crash.

 

Continue Reading

PowerPoints

Northern Ohio FOOLS 14th annual Heavy Rescue 101

The Northern Ohio FOOLS hosted their 14th annual Heavy Rescue 101 this last weekend. This free event was full just 2-hours after the tickets were released online.

Published

on

Northern Ohio FOOLS

The Northern Ohio FOOLS hosted their 14th annual Heavy Rescue 101 this last weekend. This free event was full just 2-hours after the tickets were released online. Volunteers, tool vendors, sponsors, and of course the students started to converge on the Huron County Fair grounds Friday evening for 3 presentations in a classroom setting.

Saturday morning the HOT part of this course started and students selected two different course tracks, basic or advanced. The basic class covered standard techniques common taught and used by rescuers around the world.

The advanced track was broken up into 5 different pits that covered side impacts, alternative methods, inverted vehicles, limited access crashes, and incidents involing a commerical truck.

Side Impacts

Alternative methods

The alternative methods station does not give hydraulic or electric cutters, spreaders, rams as tool options. It makes people think and use many tools that the vast majority of today’s firefighters are not familiar with operating. It shows that extrication work can be done without cutters and spreaders. It also demonstrates options that can be used in conjunction with extrication tools during complex extrications or limited extrication tool availability.

The pictures below is the “Batwing” at taught by by Steve Johnson, Mikey Torres, and Ron Whitaker

Inverted Vehicles (Cracking the egg)

Limited Access

The Alternative methods and Limited Access Pits were taught from a great group of brothers from First In-Last Out Fire Equipment & Training LLC.

Incidents involving a commercial trucks

Continue Reading

Techniques

Ratchet Strap Storage and Deployment (Triple R Method)

One tool in the rescue discipline that is important to store properly, ready for fast effective deployment is the ratchet strap.  One method that satisfies both requirements is the Triple R Method.

Published

on

Ratchet Strap Storage and Deployment

Triple R Method

One tool in the rescue discipline that is important to store properly, ready for fast effective deployment is the ratchet strap.  One method that satisfies both requirements is the Triple R Method.  I first ran across this technique on Iraki West’s Heavy Rescue Germany page.  I included his video and also located a video in English below.

Here are a few pictures from the Heavy Rescue Germany that show the Triple R method in several different stages of storing the straps.  The Heavy Rescue Germany site is written in German, if that is not your first language, the “Translate” button should pop up and you can quickly translate the entire website.

 

 

 

 

 

 

Here’s another method of storing ratchet straps from VentEnterSearch.com.

Continue Reading
Advertisement

Sponsored By

Training Content Partner

Facebook